Gradient Boosting Machine for Early Prediction
of Sepsis Using Clinical Data

Soufiane Chami!, Kouhyar Tavakolian!
! School of Electrical Engineering & Computer Science
University of North Dakota, Grand Forks, ND, United States

Abstract

Sepsis is a severe medical condition caused by the
body’s extreme response to an infection leading to tissue
damage, organ failure, and even death. The emergence of
advanced technologies such as Artificial Intelligence and
machine learning allowed faster exploration of advanced
ways to recognize sepsis cases. In this paper, we present an
efficient model, based on gradient boosting machines, to
optimize sepsis risk monitoring and mitigation. Our model
can also serve as a general framework to solve survival
analysis problems in different domains. We also provide
generic techniques for statistical feature extraction, which
can drastically increase the aptitudes of detection without
specific domain knowledge. The proposed model is also
capable of handling a high rate of missing values of patient
records. There are four main components of the model:
features engineering, sepsis risk estimation, alert system
optimization, and finally sepsis alarm predictions. Using
the utility score metrics provided by PhysioNet/Computing
in Cardiology Challenge 2019, the local validation score
are 32.9% for utility score and 82.1% for Area Under the
ROC Curve. Such results places us among the 10 places in
the public leader-board.

1. Introduction

Sepsis is a severe medical condition caused by the
body’s extreme response to an infection leading to tissue
damage, organ failure, and death. Every 3-4 seconds, at
least one person dies because of sepsis worldwide. Sep-
sis affects about 1.6 million Americans yearly [1]. As a
leading cause of death in US hospitals, sepsis costs the US
about 24 billion USD, 6.2% of the total hospital costs in
2013 [2].

The early detection of sepsis has proven to be a key fac-
tor in increasing the efficiency of antibiotic treatment for
septic patients. Related studies [3] demonstrated that early
detection prevents 80% of death cases caused by sepsis.
On the other hand, it was reported that the sepsis mortality
significantly increases with the length of stay of the septic

patient in the hospital. In other words, delayed recognition
of sepsis exacerbates the risk of death of a septic patient by
7.6% every hour [4].

Furthermore, with the emergence of more advanced
technologies, there is a significant amount of Electronic
Health Records (EHRs) that became available. The EHRs
are a systematic collection of data used as health indica-
tors of a patient. The growing availability of the EHRs
brought so many interests and opportunities to develop
more advanced predictive models to early recognize septic
patients. The electronic health records can be time-based
features that change over time (time series) like heart rate
or blood pressure. Also, they can be static features like
demographic information such as age and gender.

The clinical definition of the systemic inflammatory re-
sponse (SIRS) to infection, specifies four conditions in
which only two of them are sufficient to trigger an alert
of sepsis [5]. These conditions are listed as follows:

1. Temperature > 38°C or < 36°C

2. White blood cell count > 12,000 per ml or <

4,000 per ml, and > 10% for immature (band)

forms

Heart rate of > 90 beats per minute

4. Respiratory rate of > 20 breaths per minute or par-
tial pressure of CO2 of <32 mmHg

O]

The rest of the paper is organized as follows: In section
II, we outline the task definition of the PhysioNet chal-
lenge of this year. The clinical data provided is also dis-
cussed and presented. Section III presents the proposed
methodology. In section IV, we present the obtained re-
sults. Finally, we discuss our conclusion and some future
research directions.

2. Physionet Challenge and Data

Saving the life of septic patients comes with a combina-
tion of efforts from a different perspective of sepsis. While
more advanced instruments allow closer and more accurate
follow-up of the septic patient situation, they only can tell
the current situation of a patient in a potential risk of sepsis

[6].



2.1. Problem definition

The objective of this challenge is to build a machine
learning model to predict sepsis 6 hours before the clini-
cal prediction of sepsis.

Most of the time, when patients arrive at the confirmed
sepsis shock stage, it’s most probably too late to save their
lives. Launching the antibiotic culture takes time and is
less effective when a patient is in a serious stage of sepsis.

Medical instruments can tell what has already happened
to the patient but alone they cannot tell a lot about the fu-
ture development of the patient situation. This later in-
formation is more relevant for saving an infectious patient
from death.

Each time we detect septic subjects one hour earlier, we
get a more 4-8% chance to save their lives. With the an-
cient tools of data analysis in the last decade, scientists still
face a lot of limitations to detect sepsis early enough [7].

With the emergence of machine learning techniques,
significant progress has been made to improve the current
detection tools. [1,8,9].

2.2. Related works

Early detection is not a conventional classifica-
tion/regression problem. It’s a hybrid type of problem that
requires classification accuracy that looks to distinguish
septic patients from others (is-septic), and regression to es-
timate how early a septic patient can be detected (time-to-
event). The classification aspect is evident in our training
process, however, the regression aspect is fulfilled in the
process of definition of the optimal threshold. The thresh-
old is the only parameter that can help the model to detect
sepsis early enough within the defined time limit set by
the end-user. During the training and evaluation process,
the AUC is the principal component. Then, others expect
should also be taken into consideration such as misdetec-
tion and false alarm rates. These factors allow a better
interpretation of the model and an easier comparison be-
tween different approaches.

The top solution proposed during the Physio-Net Chal-
lenge was very similar in terms of features engineering
techniques and the modeling mechanisms. In these sec-
tions, three approaches will be reviewed and presented.
The three of them obtained a rank in the top 10 range at
the Physio-Net Challenge 2019.

2.2.1. Sliding Windows and XGBoost En-
semble approach

The most performing approach [10] included two steps
to analyze sepsis data: features selection, features engi-
neering and then ensembling. The features engineering
schema separated all the covariates in the data into two

clusters: the first cluster of covariates with the minimum
number of missing values with a threshold of 10%. For the
features with low missing values:

o Aggregation using Sliding windows of 5- and 11-hours
frames while applying different methods:

— Min, max, mean, median, and variance.

— Min, max, mean, median, and variance.

— Quantile of 95%,99%,5%, and 1%

— Other features to capture Long and Short-Term
Dependencies like Shannon Entropy energy, mean
of the first differences and the length of stay for a
specific patient.

The total number of features is around 410 features. To
reduce the number of covariates and reduce the bias and
variance, the second layer of feature selection was applied
for two main objectives: select the best performing fea-
tures and five best hyperparameters. The described proce-
dure above was applied to only 10% of the data. One inter-
esting point about the feature selection in this approach is
that it was performed using BoostARoota algorithms based
on XGBoost. The procedure is that for each feature we cre-
ate another shadow feature that is basically similar to noise
and use only both of them on the training. Then, the model
should report the importance of both features. If shadow
feature is more relevant than the original features, this lat-
ter will be dropped.

Once the choice is made about which are the best per-
forming parameters and best-performing covariates, the
training start using the remaining 90% of the training
data. In fact, in this approach, we construct five ran-
domly disjoint sets and apply an under-sampling technique
to balance class in each set separately. In the end, 5-
XGBoost models are trained using each set with 5-fold-
cross-validation. The final output is calculated using the
geometric mean of the five outputs of the trained model.
As a result, this model training structure has achieved an
AUC score of 0.833 and an accuracy of 0.8440.
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Figure 1. The training strategy of the proposed method to
solve survival analysis problem.



2.2.2. Signature transformation

The approach of the second winning solution was a us-
ing similar technique to the first team in terms of its objec-
tive (i.e. capturing the long- and-short-term time depen-
dencies) and also in the use of learning algorithms. How-
ever, it was more abstract and mathematically complex.
This technique is called: signature-based features in time
series. It’s highly used in healthcare and bioinformatics
to solve DNA sequences related problems. Ilya Chevyrev
[2] is the inventor of this technique in the modeling and
the machine learning domain. The second winning used
the technique and applied a sliding approach to each col-
umn. Then they injected the resulted table to an Ensem-
ble of XGBoost models. While it’s very powerful to use
signature-based features, it’s still more complex methods
and remains less flexible than the first winning solution. In
this case, it’s harder to interpret the features of the columns
and their impact on the model performance. This approach
obtained a score of 0.433 on the public leaderboard.

2.2.3. Time Phased Model

There is a particular characteristic of the dataset of the
PhysioNet challenge. The sepsis events are hugely time-
dependent, and the risk of sepsis depends a lot on the pre-
vious events in the long and short terms. That’s why most
of the top winners used time-based features to capture all
these dependencies. While the last two winners have based
their learning models on GBM, the third team led by Xiang
Li from the University of Ping An technology at Beijing,
proposed a combination of neural network and XGBoost
in different stages depending on the length of stay of the
patient. These stages are defined as follows: Early stage
(1-9 hrs.), Middle Stage (10-49 hrs.), and Late Stage (50+
hrs.). This approach obtained a score of 0.415 with 10-fold
cross-validation.

H Approach AUC score  Utility Score H
Signature Transformation 86.8% 0.433
Sliding Windows 83.3% 0.422
Time Phase Stages N.A 0.415

3. Proposed Approach
In this section, we present the data pre-processing

stage, features extraction, and an overview of the proposed
model.

3.1. Data Features

There are more than 40 health variables used to track
the health situation of the patients in this challenge. The

40 columns are classified into three classes: vital signs,
lab tests, and static variables.

3.1.1. Vitals signs

Most of these features concern the main screening sig-
nal that would reflect the continuous situation of patient
health. There are 8 vital signs provided in the data and we
can cluster them into three main categories: ECG signals,
Pulse signals, and Temperature.

o ECG signals: The main columns related are the heart
rate, systolic blood pressure, and diastolic blood pres-
sure. The severity of sepsis is very correlated to the
number of beats per minute. Many studies have shown
that the more sepsis gets worse, the more we observe
ECG abnormalities. This can be explained by the loss
of excitability in cardiac tissue during the sepsis.

o Pulse signals: Respiration rate, O2Sat, and EtCO2
(End-tidal carbon dioxide)

o Temperature: Symptoms of sepsis include a fever
above 101°F (38°C) or a temperature below 96.8°F
(36°C) heart rate higher than 90 beats per minute. So,
tracking the temperature is very important for the early
detection task. The predictive model uses a certain
number of the previous data points from the current
time and tries to detect any significant shift on tem-
perature (drop or rise).

3.1.2. Lab tests

The role of laboratory tests is very significant for the
early detection of sepsis. Since the main definition of sep-
sis is the body’s systemic inflammatory response to a bac-
terial infection [11]. The spread of bacteria in the blood
(bacteremia) makes it a big indicator of sepsis infection.
About 25 lab tests have been provided in the data for sep-
sis detection. These features include: White blood cells
count, Blood urea nitrogen, Lactic acid, partial thrombo-
plastin time, Leukocyte count, Platelets.

3.1.3. Demographics features

Some studies have shown that sepsis mortality has a lit-
tle thing to do with demographics. Especially age and
length of stay. In our current model, we still find this is
not the case. More results will be shown in the next para-
graphs [12]. The main demographic features in the data are
gender, age, and length of stay. Surprisingly, we found out
in our model, that age is a critical factor to predict sepsis
risk.



3.2. Data Pre-processing & Features

Before the learning step, the clinical dataset we have for
the challenge contains a lot of inconsistencies. For our
model, we have performed many preprocessing techniques
to ensure the consistency of the data and create new fea-
tures. The processing pipeline can be described as follow:

(1) Handling missing values: Several lab tests features
have up to 90% of missing values. The data resolution is
hourly based, and it is difficult to perform lab experiments
every hour for every patient. Which explains the high ratio
of missing values in lab test columns. However, the values
in these columns are very important and removing them
would not be the best idea. In order to handle missing
values:

1. We have performed interpolation which fills a miss-
ing value with the mean of the two consecutive non-
missing values.

2. The remaining missing values are filled using back-
ward and then forward values.

(2) Lag features: The purpose of these features is to
capture the long- and short-time dependencies. We per-
formed different sliding windows with mean of the last
1,2,..,9 hours.

(3) Data binning: To reduce some variance in the signal
columns. We create new features that aggregate the signal
value into ranges and intervals. We have based the data
binning on the max and min of each signal. There is an
option to define range limits using Random Forest. We
expect to explore it in future work.

(4) Count Encoding of Categorical features: applied
mainly on the demographic features such as age and gen-
der.

3.3. Gradient Boosting Machine Ensemble
3.3.1. Model description

As explained earlier, our proposed model to predict sep-
sis is based on two layers: sepsis risk prediction (classifi-
cation task), and optimal cut-off assessment (optimization
layer).

The first layer will be based on Ensemble of 5 Gradi-
ent Boosting Models of Light-GBM. GBM algorithms are
based on a fundamental idea, which is weak learners (de-
cision trees) make strong predictors. In other words, the
GBM model makes an iterative learning process that starts
with one weak classifier, then, builds a second model that
learns from the errors made by its predecessor model. The
process is iterated multiple times to achieve the best pos-
sible performance. This is a common treat between all the
GBM models such: XGBoost and Light-GBM.

In our proposed model, we have decided to pick Light-
GBM as a candidate to predict sepsis. There are multiple

benefits of considering Light-GBM as one of the best can-
didates to make effective sepsis predictions. First, its ca-
pability to handle missing values. During the training pro-
cess of LGBM, the missing values are handled in a way
that reduces the loss error as much as possible during the
trees split process. Second, LGBM has also the capability
to handle categorical features without the need for manual
processing. Finally, in terms of computational expenses,
the Light-GBM is much faster and more accurate than XG-
Boost [13]. Finally, Light-GBM supports parallel comput-
ing using GPU and OpenMPI. This gives a computational
convince and advantage to make faster iterations and re-
duce the experimentation time.

Finally, it’s worth noting that on the contrary of most
proposed models during the PhysioNet challenge, we are
the only team using Light-GBM to predict sepsis.

3.3.2. Training Process

The training data provided is seriously unbalanced.
Among 40336 patients, only 2932 patients are septic. This
is a ratio of 7.27, and most of the samples are negative
with a ratio of 92.73%. One of the fundamental strategies
we considered for sepsis detection is to consider stratified
cross-validation for validation and stratified sampling for
testing. In other words, the data is split into 2 sets: train
data, test data. The train data will be split further during the
cross-validation process with stratified 5-folds. Stratifica-
tion is based on the Sepsis Labels and consists of keeping
the same ratio of negative (non-septic) and positive sam-
ples (septic). The figure 2 can describe the process:

[ —
Raw data
Train Data Classification Test Data

Stratified Sampling Data Preprocessing ~ ——* Stratified Cross Validation ——» Preprocessing

Train & Validation Score Predictions & Evaluation

| |

Train & Validation Score Train & Validation Score

Figure 2. Validation Schema

It’s worth noting here that there is a tricky issue about
sampling methods on the data we are dealing with. The
provided data is labeled per observation per hour per pa-
tient, which may lead to think that one sample is equal to
one observation. This thinking will lead to a huge data
leak during the modeling process between patient record-
ing. We can call it Inter-leak. The definition of the sample
should be the whole recording collected from each patient.
Still, this approach does stop the inter-leak but can’t stop
the leak between observation of the same recording.

In our experiment, we assume that the Intra-leak will
not have a significant impact on the training and validation
process.



3.4. Cut-off Value Optimization

The decision of this alarm is not only based on the pre-

diction of the risk probability but also, it’s based on what
level of risk the alarm should be triggered. A good clas-
sifier with a bad triggering mechanism will do poor dur-
ing the deployment stage. This applies to all similar prob-
lems characterized by serious class unbalance and time-
sensitive predictions and requires early detection within a
specific time interval. For instance, Customer Churn Pre-
diction in banking and insurance businesses. This type of
problem is extremely similar to the sepsis problem that we
are discussing in this paper. In this direction, in order to
mitigate the sepsis risk effectively we need to:

1. Predict as accurately as possible the risk of sepsis de-
velopment for a subject. This is evaluated by the AUC
score.

2. Make sure we trigger the alarm ON-TIME for the right
subject. This relies principally on the defined threshold
of sepsis.

To be successful in the second evaluation step, we pro-
pose the validation schema described in the figure 3 below
to build a robust machine learning model.

predictions
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Figure 3. Proposed Machine Learning Pipeline.

3.4.1. Alert System

The process to define the AUC threshold stars by com-
paring the out-of-fold predictions with actual values and
calculate the number of false-positive and false-negative
according to different thresholds values. The optimal
threshold that allows minimum false positive and false
negative is chosen.

As described above, our training process is not subject-
wise but the prediction is. In other words, during the train-
ing, we don’t distinguish between each subject and we look
at the training data as one subject or one table and each
timestep as an observation independently. On the other
hand, during the prediction happens for each subject sepa-
rately.

The question here is should we apply this process on a
subject level or the whole training dataset similarly to the
training? To answer this, there are options to explore:

1. Timesteps observations across the training data.
2. Timesteps observations across the subject record.

The first option evaluates the thresholds by looking at
the observations in the training data regardless of the sub-
ject record they belong to. This will be more focusing on
how early the sepsis was detected if any.

i 00F Process each Eet highest Output
i subject recard probability/sepsis score  |—— threshold
i 2 \Within each record decision

| saparately
|

|
| Actual labels
i of subjects

Figure 4. Approach No.1 that defines threshold by looking
at subjects as data-point by aggregation.
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| from sklemn metrics import roc_aurve. |

The second option will aggregate the sepsis scores by
each record and will analyze the threshold by looking at
each subject as one observation. This option focuses more
on whether we could detect the right septic patients or not
regardless of how early this happened.

00F
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! record in one threshold for all
1| Actual timesteps table records

| labels

1
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Figure 5. Approach No.2 that defines threshold by looking
at timesteps in each record as data-point and regardless of
the subject.

From both approaches, we can see there is a difference
in the counting of the false positive and false-negative ra-
tios. This impacts the false alarm and sepsis misdetection
rates and the normalized utility score at the end. The figure
below describes the workflow of our experiment is evalu-
ating both approaches.

I Approach No.1

Extract optimal Evaluate utility
threshold SCOe

| OOF data

| Extract optimal
| threshold

Approach No.2 Evaluate utility ‘

SCOE

Figure 6. Experiment workflow. OOF means out-of-fold
data collected during the cross-validation process

3.4.2. Results: optimal cut-off

To observe the impact of each method, we can compare
them regarding three metrics: utility score, false alarm,
misdetection rate.

From the obtained results, we can conclude that the Ap-
proach No.1 is better and we should define the optimal
cut-off by considering one Timestamp observations as an



LightGBM Features {(avg over folds)

Age
HospAdmTime
Platelets
Creatinine
WEC

PTT

BUN
Alkalinephos
AST

Chioride
Phosphate
Lactate
Calciurm
HCO3
Trepeninl
Bilirubin_total
5a02
Magnesium
Hab

Hct

Feature

Fibrinogen

Fi0z

PaC02

pH

EtCO2
Age_lag_mean_5
HospAdmTime_lag_mean_5
Potassium
Bilirubin_direct
BaseExcess

Glucose

Unit2
Resp_quantile_1_11
HR_guantile_1_11
ICULOS lag_mean 5

T T T T
o 1000 2000 3000 4000
importance

Figure 9. Features Importance is defined based on infor-
mation gain during the training process of Light-GBM

element of the whole training data and not an observation
isolated within a patient record. It’s worth noting that a bet-
ter schema to find the optimal threshold can be explored.
While this can be a solid schema to empirically define the
optimal threshold, there is still a risk of over-fitting, which,
in our estimation, can be handled by performing this exper-
iment multiple times using the same model but with differ-
ent seed in the hyper-parameters. This can help to reduce
variance and over-fitting.

nb of test subjects Approach Threshold False alarm Misdetection Utility
10084 No.1 33.22% 26.09 % 27.271% 31.6%
No.2 40.65% 27.271% 17.735% 32.9%

Figure 7. Comparison of performance scores for both
threshold optimization approaches.
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Figure 8. Optimal Cut-off is defined using the ROC curve.
Approach No.1 (right) and Approach No.2 (left)

Form the experimental results, we conclude that the
optimal cut-off should defined by analysing subjects as
data points rather considering all the sub-labels within the
records of each subject.

3.5. Relevant Factors

Concerning the importance of the features, the figure 9
exhibits the most relevant features to detect sepsis accord-
ing to the Light-GBM. We observe the Age is one the most
important factor to define sepsis risk. This is very corre-
lated with the state of the art about sepsis risk estimation.
Besides to age, length of stay and other characteristics of
Blood Cells are very deterministic to define sepsis risk.

3.6. Discussion & Conclusion

In this paper, we proposed an efficient and fast sepsis
early detection system that requires less information with
cheaper computational cost and provides great prediction
capabilities. Our model can help in diagnosing sepsis in
the hospital at least 6 hours before a human doctor save up
to 31.6% sepsis patients from fatal death. This 75 000 lives
saved from sepsis if such an algorithm is implemented in
each US hospital [14]. We believe such work can help in
making more progress in saving

It will be much easier to implement it in the medical
devices with lower computational capacity.
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