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Abstract—The considerable growth of energy demand through-
out the years has hastened the migration towards the modern
power systems named Smart Grids. To effectively meet the energy
demand and well manage its energy flow, forecasting has become
a key element for operators and buildings’ owners to monitor
their energy flows. Predicting the energy demand patterns an
hour, a week or a year ahead helps in improving the reliability
and efficiency of the power system along with reducing the load
consumption. This paper presents three forecasting models based
on long-term load prediction for various buildings: Educational,
Offices, Residential, etc. Based on one-year training data, we
were able to predict the next two-year energy demand of 1500
buildings using three different forecasting models: Light-GBM,
Artificial Neural Network, and Linear Regression. We compared
the accuracy of each model using Root Mean Square Logarithmic
Error. The experimental results show that Light-GBM method
performs well since it provided a better RMSLE of 1.09 compared
to the other methods.

Index Terms—Forecasting, Energy consumption, Light-GBM,
Neural Network, Linear Regression, Load prediction.

I. INTRODUCTION

A. Motivation

THE traditional power systems have known several
changes over the last decades. The high penetration of

Information and Communication Technologies (ICT) and Dis-
tributed Energy Resources (DER), as well as the high energy
demand records over time, have fastened the immigration
toward a more intelligent power system called Smart Grid.
Smart Grid becomes a key enabling for new technologies
integration, it is envisioned as the next-generation power grid,
promoting the integration of new concepts, and new power
resources.

B. State of the Art

One of the main objectives of Smart Grid is monitoring,
controlling and reducing energy consumption in different
sectors: residential, industrial and commercial which
enhanced the use of forecasting techniques in the energy
sector especially with the large implementation of smart
meters. On the other hand, forecasting techniques as a
promising tool have demonstrated a great and significant
plus to the scientific community. Predicting the energy
consumption rates, for instance, of the following days, weeks
or even years will not only help decreasing and shaving the
peak demand but ensuring the reliability and efficiency of the
power grid. It is in this context that even though it is difficult,

energy forecasting becomes a hot topic that grabs increasing
attention from academia, industry, and government.
Typically, there are three kinds of forecasting: Short term
which stands for one hour to one-week predictions, Medium-
term forecasts that range from one week up to one year
and last but not least, Long term predictions which intervals
are longer than one year [4]. Load forecasting helps in
reshaping the energy use over time, as a result, opt for
suitable and favorable energy purchase plans [4]. According
to [1], [2], [3], [15] residential and commercial buildings
consume 20-40% of total energy consumption worldwide
and it keeps increasing over time. Building’s size, age,
location, architecture and the thermal properties of the used
materials, number of occupants and their behavior and finally
weather conditions [10][6][7][11][8] are all considered as
important factors in establishing its energy consumption. As
stated by [5], there are two major methods for performing
load forecasting: 1) Physics principles-based models and 2)
Statistical and machine learning-based models. In this paper,
the authors’ focus was on machine learning-based models.

In the literature, several papers have discussed buildings’
energy demand using different machine learning approaches.
In [9], Daut and al. have provided an overview of conventional,
artificial intelligence (AI) and hybrid methods and analyzed
the performance of these methods for load forecasting. In
[5], Marino and al. investigate the effectiveness of two
Long Short-Term Memory (LSTM) variations LSTM based
Sequence to Sequence (S2S) architecture and standard LSTM
to forecast a residential building’s energy consumption based
on one-hour and one-minute resolution dataset. Authors claim
that the standard LSTM does not perform well as the LSTM
base S2S which provides better results on both datasets
similarly to Factored Conditional Restricted Boltzmann
Machines (FCRBM) and the conditional restricted Boltzmann
machine (CRBM). As for [12], it provides a performance
comparison between the Convolutional Neural Network
(CNN) and Artificial Neural Network (ANN), Support
Vector Machine (SVM), LSTM, LSTM-S2S and FCRBM
algorithms on a One-hour time resolution dataset of a single
residential customer. In a similar study, Amber et al. [14]
have compared five forecasting techniques: ANN, Deep
Neural Network (DNN) Multiple Regression (MR), SVM
and Genetic Programming (GP), on five years electricity
consumption dataset of an administrative building in London.
This comparison presented good MAPE score of 6% for
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ANN method. Yu et al.[13] model individual household
electricity demand using sparse coding approach to predict
next-day and next-week load. Authors affirm the effectiveness
of sparse code features in reducing the forecasting error
of next-day and next-week total load. Mocanu and al. [4],
compared CRBM, FCRBM, ANN, SVM and the Recurrent
Neural Network (RNN) performance in predicting residential
energy consumption over different time resolutions. Results
show that FCRBM outperformed the four other methods. In
[6], Weicong and al. demonstrate the performance of LSTM
method on residential load forecasting through comparison
with Feed-Forward Neural Network (FFNN) and K-Nearest
Neighbor (KNN). Aydinalp and al. [10] have used neural
networks to model and predict space heating (SH) energy
consumption as well as Domestic hot-water (DHW) heating
energy consumption.

In order to evaluate the accuracy of forecasting models,
different error metrics can be used such as Root Mean
Square Error (RMSE), Mean Square Error (MAS), Mean
Absolute Percentage Error MAPE, Relative Error (RE),
Mean percentage error (MPE) and Root Mean Squared
Logarithmic Error (RMSLE) [14]. In this paper, the authors
will use three forecasting models to predict the energy
demand of 1500 buildings. These forecasting models are
Light-GBM, Neural Network (NN) and Linear Regression.
Models’ results will be compared to each other using RMSLE.

The remainder of the paper is organized as follows. Section
II presents an overview of the problem, dataset description
and processing are provided in Section III and Section IV
respectively. In Section V, a background on the Light-GBM
method has been provided. Section VI summarizes the results
analysis and discussion Different forecasting models used
in this paper are described in Section IV. Finally, Section
V concludes the paper and provides the authors’ future works.

II. PROBLEM STATEMENT

As stated in Kaggle platform [16], the purpose of this
challenge is to predict energy consumption per building per
hour for the two years ahead given the historic data of
only one year. The historic data contains approximately 15K
buildings existing in anonymous locations around the globe,
starting from the 1st January 2016 to the 31st December
2016. The goal is to predict meter reading in the next two
years from the 1st January 2017 until the 31st December
2018. The Model predictions will be evaluated with Root
Mean Squared Logarithmic Error (RMSLE). In this paper, we
will examine different approaches and multiple algorithms as
well as comment on the different features and strategies that
provide most utilities to predict hourly energy consumption
per building.

III. DATA DESCRIPTION

The layout of the challenge is to give a year range of
historic data (2016) to predict the following two years (2017-
2018). The provided dataset includes hourly based historic

data of more than 1500 buildings all over the globe and
across different meter types. The data is not based only
on historic energy consumption, but also the correspondent
weather details for each hour. A detailed outline of the data
is listed as follow:

A. Building metadata

This table contains the available details about each building
such as the year the building was built, the primary use of the
building, and the flour count:

1) site id: unique side identifier;
2) building id: unique building identifier;
3) primary use: the type of activities meant for the build-

ing: Education, Office, . . . etc.
4) square feet : Gross floor area of the building;
5) year built : Year building was opened;
6) floor count : Number of floors of the building.

B. Meteorological data

The other source of data provides historic weather condi-
tions of each site. The features of the weather conditions are
listed as follows:

1) site id: unique side identifier;
2) air temperature air temperature in Degrees Celsius;
3) cloud coverage: portion of the sky covered in clouds,

in oktas;
4) dew temperature: dwelling temperature in Degrees

Celsius;
5) precip depth 1 hr : precipitation depth in millimeters;
6) sea level pressure : sea level pressure in millimeters;
7) wind direction : compass direction (0-360);
8) wind speed : wind speed in meters per second.

Authors assume that all the buildings of each site have the
same weather conditions.

C. Power Consumption data

The final data source provided in the challenge is the time
series record of the energy consumption of each building.
The dataset has been divided into training and testing sets.
The training data is considered from the 1stJanuary, 2016
to 31stDecember, 2016, while the testing data is the historic
data from 1stJanuary, 2017 to 31stDecember, 2018. Authors
would like to mention that the training and the testing datasets
were both depicted from the same dataset of the same building.
The features included in these tables are listed as follow:

1) Timestamp: the moment the measurement was taken;
2) Building id unique building identifier
3) Meter: describes the metertype and labeled as follows
{0 : electricity, 1 : chilledwater, 2 : steam, 3 :
hotwater}.

4) Meter reading: the target variable: Energy consump-
tion in kWh (or equivalent). Note that this is real data
with measurement error, which we expect will impose
a baseline level of modeling error. For the test data, the
target variable is filled with zero (hidden).
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Fig. 1. Target Variable : Meter reading measurements aggregated by day during one year 2016

D. Data Exploration

As illustrated in Fig.1, the average energy consumption
during the first three months of 2016 has increased during the
next four months. Then it decreases for the rest of the year
except for a peak in November. A preliminary hypothesis that
can explain this phenomenon is that buildings included in the
training may have a dominant pattern that drives the whole
consumption profile in the training dataset.

This hypothesis can be validated to a large extent using the
figure 2 . We observe that the education buildings have almost
the same profile as the global meter reading in the training
data. Besides, the magnitude of the education is extremely
dominant over all the other buildings with different primary
use. In other sites, where the energy consumption of Education
buildings takes different shapes, the level of magnitude of
consumed energy is very low and can not drive the global
energy profile shown in figure 1.

IV. DATA PROCESSING

To make it possible to feed the machine model and ensure it
can capture the consistent and entire information, we need to
perform features engineering on the training data and any other
preprocessing methods if necessary. In the following sections,
we explain the main features engineering operations applied
during the modeling pipeline. Then we will evaluate the impact
of each technique on the model performance.

1) Outliers Removal: As deduced earlier from previous
sections, the energy consumption profile is too different from
a building type to another. Therefore, outliers should be
carefully and separately treated since they usually create
discrepancies between the training and test data. Outliers are
usually known by their characteristic of ruining the validation
schema in machine learning if they are not well treated.

Most of what we have observed in the training data con-
firmed that outliers come mainly from Education buildings ??.
Practically speaking, in order to detect outliers, we aggregated
the train data by day and meter type. We believe the outliers

should be observed exclusively with respect to the type of
energy consumed. Thus, we plotted the meter reading of the
whole year with daily energy consumption. As can be seen in
Fig.??, there is a quite flagrant difference in meter reading for
each meter type. Table I shows the number of outliers building
detected within each meter type.

It is important to check some of these buildings’ outliers and
find the reason for their high detected values. For instance,
and as illustrated in Fig.??, building 799 seems it did not
have any data before June. This can be explained by the
fact that the building is new, but according to the dataset, it
was built in 1976. Besides, two periods with a daily average
of 75 000 kWh then 175 000 kWh for 500 000 ft2 are
observed. Which is equivalent to 0,15-0,35 kWh/ft2/day
and 55-130 kWh/ft2/year.Th is is 3-7 times more than the
typical consumption that is 20 kWh/ft2/year.

The most probable explanation is something wrong with
the software configuration that did not make the measure
conversion correctly. We observe a similar problem in other
outliers. The solution is normalization that converts the
meter reading to a value between 0 and 1.

2) Timestamp Parsing: This feature has valuable infor-
mation that would help in mapping the energy consumption
and capture seasonality and time decencies. For example, the
power consumption in some buildings may be higher or lower
at the weekends or holidays. It can also change in the summer
and winter. For this reason, we can apply a parsing function to
extract all this information from the timestamp. It is also worth
noting that we can not use the holiday calendar since we do not
have indications about the locations of the building. Finally,
we could extract the three main features from the timestamp:
day of the week, if it is weekend, week of the month and the
hour of the day. Some of these features can be seen more as
categorical features such as the day of the week.

3) Categorical Features: Handling the categorical feature
impacts the performance of the model. It is very important to
make sure that the model can handle them without losing the
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Fig. 2. Education Energy Profile per site

information they contain as much as possible. For this reason,
we decide to highly consider Gradient boosting Machine
Models such as Light-GBM. It is a very excellent model that
can categorize features without the need for encoding and
converting them into numerical columns. In table II, we en-

abled the options of categorical features recognition by Light-
GBM, we notice that using this property helps considerably
in improving the accuracy of the model by around 10%.

4) Missing values: The weather table contains a lot of
missing values as well as other tables’ columns, such as
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TABLE I
OUTLIERS BUILDING FOR ELECTRICITY METER

site id building id primary use square feet year build floor count
794 7 794 Education 731945 1969 11
799 7 799 Education 527431 1976 26
801 7 801 Education 484376 1952 5
803 7 803 Education 182986 1962 3
993 9 993 Education 428647 NAN NAN
1088 13 1088 Education 287594 NAN NAN

building metadata. For the weather data, we will use interpo-
lation as a method to compute the missing values. Whereas,
for the categorical features in building metadata, we will use
NAN values as a separate category along with other categories
within the columns.

5) Target Preprocessing: Since the evaluation metric of
this challenge relies on the Root Mean Squared Logarithmic
Error (RMSLE), we will consider converting the target vari-
able to log to rescale the target variable and applies reverse
functions to return to the kWh scale.

V. METHODS

A. Light-GBM

Light-GBM [17] is a gradient boosting machine algorithm
that is similar to XGBoost with few variations. Generally
speaking, gradient boosting machines algorithms are based on
a fundamental Idea: Weak learners make strong predictors.
This training process of GBM algorithms starts by training a
weak learner such as decision trees and observes its error and
mispredicted data points. Then, special weights are attributed
to each of these data points. The following learner will be
trained and tries to avoid making the same mistakes as the
previous model. This cycle will be repeated and iterated until
a reasonable performance is achieved.

This principle is applied to both XGBoost and Light-GBM,
the only difference between these algorithms is that XGBoost
follows vertical decision trees growth (depth-wise) and
Light-GBM follow a horizontal growth (leaf-wise)

In this model, our purpose is to observe the model behavior
toward the training data at hand. We also wanted to set
up a benchmark for our project to evaluate the utility and
impact of each adjustment made on the model. This point is
very important to avoid modeling complexities that do not
provide any added values to the objective of this project. At
this stage, we chose Light-GBM as our selected algorithm to
run the experiment. Later, it will be compared with different
algorithms.

VI. RESULTS AND DISCUSSION

In this section, we will present the evaluation metrics and
the corresponding results obtained for each model. We will
also outline the most important factors that contributed to the
prediction of the energy consumption per building.

Fig. 3. Features classification according to their importance and contribution
in predicting buildings’ energy consumption

A. Features Engineering Strategy Evaluation

We first run a baseline model having all the preprocessing
strategies enabled. Then we disable one strategy each time to
assess the model. Next, we compare the performance variation
and report a decreasing percentage. Thereby, we can observe
the impact of each feature engineering strategy and quantify
its utility. Table II summarizes the obtained results.

B. Important factors

Using Light-GBM, we got interesting results about the
most important features that helped in predicting the future
consumption profile of each building. Form Fig.3, it can be
concluded that the weather conditions, building metadata, and
day-time are the most important aspects in predicting the
energy consumption of buildings.

C. Evaluation and Metrics

On the performance evaluation, the challenge adopted The
Root Mean Squared Logarithmic Error (RMSLE) metric
to judge models’ accuracy. The Root Mean squared Error
(RMSE) measures the bias and variance. It is defined in (1)
as follows:

RMSE =

√
1

n
Σn

i=1

(
pi − ai

)2
(1)
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TABLE II
SUMMARY OF OBTAINED RESULTS

Strategy Contribution Details
Log-scaled target 45.70% Rescale the meter readings using log1p
Dropping Outliers 17.80% Drop bad measurements form site 0 electrical data from the first 141 days
Allow LGBM to handle Categorical Features 9.70% Define Categorical Features and allow LGBM to handle them itself
Per-meter models 3.90% Build separate models per meter type
Time-based features 4.00% Timestamp parsing, and fix difference across different sites
Filling missing data 0.40% Input missing values in weather data by interpolation
Missing value as Category 0.10% Use missing as categorical features to mentioned if the columns has Nan value or not

Fig. 4. Light-GBM Out-Of-Folds (OOF) predictions Vs Actual values per day and per hour

While RMSLE is used when the predictions and actual values
are replaced by their logarithmic values as described by (2):

RMSLE =

√
1

n
Σn

i=1

(
log(pi)− log(ai)

)2
(2)

There is a reason behind choosing RMSLE over the RMSE
and MAE or any other regression loss function. The RMSLE
is used when we do not want to penalize the model for
huge differences between predicted and actual values when
the response variable takes a big number. More specifically,
RMSLE does not penalize the model when it makes an
over-estimation, but it punishes the model for making under-
estimations. It is more robust against outliers.

The obtained results from the three tested models are as
follows:

TABLE III
TRAINING RESULTS

Approach Train Validation
Light-GBM 1.1017 1.099

ANN 1.061 1.15
Linear Regression 1.7 1.909

Generally speaking, Light- GBM model is more performant
than the other algorithms. On one hand, despite their great
success on complex data structures like text and images, neural

networks are very limited on tabular data due to their data
hanging and the fact that they require to be fed by a huge
amount of data. Besides, in the context of this challenge, it
is in-efficient to treat each building as a sequence to make it
meaningful for an ANN. On the other hand, Light-GBM is
very successful in this type of data and can learn more than
different extracted features.

Table III summarizes the obtained results of the three
tested algorithms in terms of RMSLE. As can be seen, Light-
GBM outperforms all other methods. It achieves 1.09 on tests
dataset.

Finally, for the sake of providing a visual description of
the behavior of the Light-GBM model, we included Fig.4
that provides an snapshot of the Out-Of-Folds predictions
throughout four months from January to March 2016.

VII. CONCLUSION

In this paper authors have compared the performance
of three forecasting models: Light-GBM, ANN and Linear
regression to predict two years energy demand of 1500
buildings over the world based on one year data. From
the research that has been carried out, Light-GBM model
outperforms the other proposed models since it provided a
low RMSLE 1.09 compared to the other methods.
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